

Redefining Accessibility in Higher Education and Employment Sectors for Neurodiverse Individuals with the Use of Technology Under the Ambit of Disability Justice.

Mitu De^{1,2*}, Pranabesh Bhunia³, Manoj Kumar Mahata⁴ and Indrani Basu⁵

¹President (Hony.) & Head of Research and Academic Studies Unit, Autism Society West Bengal (ASWB), Stadium Nagar, Stadium Colony, Mukundapur, 700099 Kolkata, West Bengal, India

²Associate Professor, Department of Botany, Gurudas College, Phool Bagan, Narkeldanga, 700054 Kolkata, West Bengal, India

³Faculty & Special Educator, Autism Society West Bengal (ASWB), Stadium Nagar, Stadium Colony, Mukundapur, 700099 Kolkata, West Bengal, India

⁴Special Educator & D Ed Core faculty, Autism Society West Bengal (ASWB), Stadium Nagar, Stadium Colony, Mukundapur, 700099 Kolkata, West Bengal, India

⁵Founder-Director, Autism Society West Bengal (ASWB), Stadium Nagar, Stadium Colony, Mukundapur, 700099 Kolkata, West Bengal, India

*Corresponding Author's Email: aswb.president@gmail.com & mitu.botany@gurudas.education

Abstract

With advances in technology new teaching learning avenues are being created especially in higher education. For many students with special needs, especially those with intellectual developmental disorder (IDD) technology is helping them to access a high-quality learning experience which some years ago would have been very difficult. Neurodiversity is now acknowledged to drive innovations that usher in unique technological advancement. Also, technology is now perceived as the game changer in higher education of neurodiverse students. Communication Apps are becoming common for overcoming the impairment in communication common in persons with autism spectrum disorder (ASD). Accessibility tools are helping the neurodivergent individuals in the employment sector. The technology sector also has much to gain from neurodiverse individuals. The neurodiverse persons are often the innovators of new technology and they often represent a population of people for whom they are creating the products for. This brings about a better awareness and understanding of the design and utility of the design and usability. This paper presents an overview on how technological advances have supported neurodiverse persons in higher education and in the employment sectors. The paper will also share the lived experiences of people with invisible disabilities like autism using technological tools that has provided reasonable accommodations for them in education as well as in the employment sector.

Keywords: Communication Apps; Employment Sector; Higher Education; Technological Tools; Neurodiversity

Introduction

Technology is increasingly recognized as a transformative force for accessibility in higher education and employment, especially for neurodiverse individuals on the autism spectrum. The concept of neurodiversity, which celebrates natural variations in cognitive processing, has redefined how society views individuals with cognitive differences such as autism, ADHD, dyslexia, and IDD. This shift has led to increased focus on making higher education and employment more inclusive for neurodiverse individuals. Technology is the primary facilitator of these efforts, offering tools that support learning, communication and accessibility and thus transforming educational and professional landscapes for neurodiverse individuals (Krzeminska & Hawse, 2020). Furthermore, the tech industry itself benefits from the unique perspectives of neurodiverse innovators, who frequently design solutions that serve the broader community.

Disability justice is a framework that advocates for an inclusive society that respects the rights, needs, and unique strengths of all individuals, especially those who are neurodiverse, including individuals with autism. Disability perspective is essential for understanding and promoting social justice (Mladenov, 2016). Traditional ableist framework view disability through a deficit-based lens, often neglecting the diverse needs of individuals with neurological variations. By shifting the focus from "fixing" disability to creating inclusive environments, disability justice encourages us to view neurodiversity, including autism, as a valuable aspect of human diversity. There has been a paradigm shift in understanding neurological differences in the context of the UN Sustainable Development Goals (SDGs) over the years (De & Basu, 2025). Ewa Rollnik-Sadowska of the Białystok University of Technology, Poland thinks that more theories, methods, and contexts are needed to support neurodivergent employees (Rollnik-Sadowska & Grabińska, 2024). As neurodiverse individuals, particularly those with autism, face significant barriers in accessing higher education and employment, technology offers transformative tools to support their unique needs and strengths. This paper investigates how adopting a disability justice approach in tandem with accessible technologies can remove barriers, foster inclusivity, and redefine accessibility in key societal sectors.

Redefining accessibility in higher education and employment sectors for neurodiverse individuals through technology requires a shift from mere accommodation to genuine inclusion grounded in the principles of disability justice. Technology, ranging from AI-driven learning tools, adaptive communication interfaces and sensory-friendly virtual platforms to assistive devices that enhance executive functioning can dismantle systemic barriers that have historically marginalized neurodiverse persons. When accessibility is reframed through the lens of disability justice, it acknowledges intersectionality, self-determination, and the right to equitable participation rather than token inclusion. In higher education, this may translate into personalized digital learning environments and universally designed curricula, while in workplaces, inclusive tech ecosystems can foster autonomy, creativity, and belonging. Thus, technology becomes not just an aid but a transformative instrument for realizing structural equity and neurodiversity-affirming spaces.

Ableist Frames in Society

Ableism refers to discrimination that privileges non-disabled individuals, often through policies, language, and social norms that define disability in deficit-based terms. In many educational and employment contexts, neurodiverse individuals are viewed through an ableist lens, which perceives their cognitive and social differences as barriers to productivity, interaction, and success. According to Dolmage (2017), traditional institutions often label neurodiverse individuals, especially those on the autism spectrum, as incapable of contributing to academic and work environments, reinforcing a one-dimensional view of capability based solely on normative standards of behaviour, communication, and productivity.

In higher education, neurodiversity affirming approaches are often used in some institutions (De & Basu, 2024). But the ableist frames manifest in rigid curriculum standards and standardized testing that disadvantage neurodiverse students by failing to provide flexibility or individualized learning approaches (Hehir, 2005). In the workplace, recruitment and performance evaluation practices often overlook or

undervalue the unique skill sets of neurodiverse individuals, resulting in high unemployment rates among autistic adults. Despite their strengths and abilities to contribute to the workforce, many autistic individuals experience unemployment, underemployment and malemployment (Zhou et. al., 2024).

Disability Justice as an Inclusive Framework

Disability justice challenges ableist assumptions by advocating for inclusivity, intersectionality, and respect for all abilities. This framework emphasizes the importance of collective access, recognizing that people have varied abilities and should not be forced to conform to narrow standards of functionality or productivity. For neurodiverse individuals, this framework advocates for environments that accommodate diverse learning and working styles, allowing them to demonstrate their skills and perspectives in ways that suit their strengths.

Central to disability justice is the notion of intersectionality, a term coined by Kimberlé Crenshaw, which emphasizes that individuals are shaped by multiple, intersecting identities, such as race, gender, and ability (Crenshaw, 1991). Neurodiverse individuals, especially those from marginalized communities, often experience compounded discrimination. Disability justice thus calls for inclusive policies and practices that go beyond accessibility and recognize the unique needs of neurodiverse individuals across diverse backgrounds.

In higher education, ableist structures manifest as standardized testing, inflexible classroom environments, and limited accommodations, often leaving neurodiverse students without the support they need to thrive (Hehir, 2005). In employment, hiring practices that focus on traditional social and communication skills, along with environments lacking sensory accommodations, frequently exclude neurodiverse individuals. As the global work force evolves, it is crucial to develop and implement strategies that not only accommodate but also leverage the unique capabilities of neurodivergent individuals (Rollnik-Sadowska & Grabińska, 2024).

Neurodiversity

In *The Power of Neurodiversity: Unleashing the Advantages of Your Differently Wired Brain*, Thomas Armstrong explores the concept of neurodiversity, celebrating cognitive differences as strengths rather than as disorders. Armstrong reframes conditions like autism, ADHD, dyslexia, and others, advocating for a shift from a medical model that focuses on "fixing" these conditions to one that recognizes the unique advantages each neurodiverse individual can offer. Drawing on scientific research and real-life stories, Armstrong highlights the talents and potential found within various neurotypes, such as the creativity often associated with ADHD or the pattern-recognition strengths of autistic individuals. He argues that society should focus on creating environments that nurture neurodiverse individuals' strengths, encouraging education, workplace, and community practices that embrace diversity in cognition. Armstrong's work emphasizes empowerment, encouraging neurodiverse individuals to harness their strengths and embrace their unique perspectives as valuable assets (Armstrong, 2011).

Steve Silberman is a pivotal figure in the field of neurodiversity, known for his influential book *NeuroTribes: The Legacy of Autism and the Future of Neurodiversity*, which reshaped public understanding of autism and neurodiversity. Silberman highlights the historical marginalization of autistic individuals and challenges the deficit-based medical model that views autism strictly as a disorder. Instead, he advocates for the neurodiversity paradigm, which recognizes neurological differences as natural variations of the human mind. This perspective emphasizes the value of autistic individuals' unique cognitive styles, encouraging society to accommodate diverse ways of thinking rather than forcing conformity. Silberman's work calls for greater inclusion, support, and acceptance, suggesting that society benefits when it respects and leverages neurodiverse perspectives. His advocacy has sparked widespread discussion, pushing both the scientific community and the general public to recognize autism as part of the rich fabric of human diversity rather than a condition to be "cured."

Technology as a Catalyst for Accessibility in Higher Education and Employment

With advances in technology, educational and professional institutions now have the opportunity to integrate tools that respect and support neurodiverse individuals' unique needs. Technologies designed with accessibility in mind can mitigate barriers, allowing individuals on the autism spectrum to participate fully in educational and work settings.

Technology in Higher Education

Technology can help create an inclusive educational environment that allows neurodiverse students to engage with content at their own pace and in formats that cater to their learning preferences. Examples of these tools include:

1. **Assistive Learning Software:** Assistive tools like text-to-speech software (e.g., Kurzweil 3000) and speech-to-text programs (e.g., Dragon NaturallySpeaking) allow students to access and process information in ways that accommodate diverse learning needs. These tools support students who may struggle with traditional reading and writing tasks by providing alternative ways to interact with course material. Researchers now think that higher education can offer a context in which cognitive diversity can be noticed, welcomed and accepted with warmth. (Hamilton and Petty, 2023).
2. **Learning Management Systems (LMS):** Platforms such as Canvas and Moodle offer multiple content formats and flexible engagement options, making it easier for neurodiverse students to manage coursework. Customization features in LMS allow instructors to tailor assignments and assessments to individual needs, providing students with options like video responses or digital presentations (Dolmage, 2017).
3. **Virtual Reality (VR) for Social and Career Skill Development:** VR technology can create simulated environments for practicing social interactions, job interviews, and other real-life scenarios, offering autistic students a safe space to build essential skills. Virtual reality based assessments and intervention tools are promising and have shown to be acceptable amongst individuals with ASD (Dechsling et al., 2022; Frolli et al., 2022).
4. **AI-Powered Tutoring Systems:** AI-driven tools offer personalized support for students by adapting content delivery and providing real-time feedback. By identifying each student's strengths and areas for growth (Xing, 2024),

Technology in Employment

In the workplace, technology can support neurodiverse employees by providing alternative ways to communicate, structure tasks, and interact with colleagues. This section highlights key technological solutions that can enhance accessibility and inclusivity:

1. **Remote Work Platforms:** The increase in remote work has enabled autistic individuals to engage in professional tasks in sensory-friendly environments. Platforms like Slack, Zoom, and Microsoft Teams facilitate asynchronous communication, reducing the pressure of face-to-face interactions.
2. **Job-Matching Platforms:** Specialized job platforms, such as Mentra and Inclusively, use AI to match neurodiverse individuals with roles suited to their abilities and preferences, minimizing barriers in the recruitment process. These platforms account for unique working styles and skill sets.
3. **Augmentative and Alternative Communication (AAC) Tools:** AAC devices like Tobii Dynavox offer speech support for nonverbal individuals, enabling them to communicate effectively in the workplace. This technology empowers autistic individuals to participate in meetings and discussions, fostering a more inclusive environment. In India Apps like Avaz and Jellow are quite popular.

4. **Digital Productivity Tools:** Tools like Trello, RescueTime, and Focus@Will help individuals structure tasks, manage time, and organize their workspaces. AI-powered tutoring systems do provide features that support personalized learning but further development is required to enable them to reach different types of learners (Mounkoro et. al., 2024).

Case Studies on Technology-Driven Accessibility for Neurodiverse Individuals, Especially Autism, in Higher Education and Employment

The following case studies provide insights into organizations and programs that are successfully leveraging technology to promote inclusion and accessibility for autistic individuals in educational and workplace settings.

University of California, Davis Accessibility Initiative

Description:

The University of California, Davis (UC Davis) has implemented a range of technology-enabled services and accommodations aimed at supporting neurodiverse students, including those with autism. The university's accessibility initiative incorporates multiple assistive technologies and specialized support programs to enhance learning and engagement.

Technologies Used

- **Learning Management Systems (LMS):** UC Davis utilizes LMS platforms such as Canvas to offer coursework in multiple formats, allowing students to interact with material according to their learning preferences.
- **Speech-to-Text and Text-to-Speech Software:** Tools like Kurzweil 3000 enable students with autism to engage with reading material through auditory channels, aiding comprehension for those who benefit from multisensory input.
- **Virtual Reality (VR) for Social Skills:** UC Davis offers VR programs that simulate social interactions, classroom dynamics, and other real-world scenarios. These simulations help neurodiverse students, especially those with autism, to practice social skills in a low-stakes, controlled environment.

Outcomes

UC Davis's accessibility initiative has shown promising results, with neurodiverse students reporting increased comfort in classroom settings, better comprehension of course materials, and improved social interactions. Technology, such as virtual reality (VR), has the potential to be of help in reaching the SDGs related to equality in education and facilitation for all individuals in acquiring the help needed (Dechsling & Nordahl-Hansen, 2023).

SAP Autism at Work Program

Description:

The SAP Autism at Work program was developed to integrate neurodiverse individuals, particularly those on the autism spectrum, into the workforce. By adapting traditional hiring and onboarding processes and utilizing accessible technology, SAP has created a supportive environment that allows autistic employees to leverage their unique strengths.

Technologies Used

- **Job-Matching and Screening Tools:** SAP employs specialized recruitment platforms that assess candidates based on their strengths, work preferences, and skills, rather than conventional criteria.
- **Digital Communication Tools:** SAP provides its neurodiverse employees with access to tools such as Slack and Microsoft Teams to support asynchronous communication. This setup helps individuals who may find real-time, face-to-face interactions challenging.

- **Productivity Tools:** The program offers employees access to project management tools like Trello and Notion, which allow them to organize tasks visually and track progress independently. This autonomy supports the unique working styles of neurodiverse individuals and helps reduce potential stress.

Outcomes

SAP's Autism at Work program has produced significant innovations in data analysis and UI/UX design. The initiative not only empowered employees with autism but also improved product usability for all users (McGann & Nguyen, 2021).

The Autism at Work program has successfully integrated autistic employees into various roles across SAP, particularly in positions that require high levels of attention to detail, such as software testing and data analysis. From a management perspective, embracing neurodiversity involves recognizing the strengths and unique abilities of individuals with neurological differences and creating an inclusive work environment that supports the contribution of neurodivergent employees (Rollnik-Sadowska & Grabińska 2024).

Ernst & Young (EY) Neurodiversity Centers of Excellence

Description

The global professional services firm Ernst & Young (EY) launched Neurodiversity Centers of Excellence in various locations to provide structured, supportive environments for neurodiverse employees, including those with autism. These centers employ technology to create a sensory-friendly workplace and offer tools for focused productivity and effective communication.

Technologies Used

- **Sensory-Sensitive Workspace Design:** EY's centers include noise-canceling headphones, adjustable lighting, and quiet zones, enabling neurodiverse employees to work comfortably without sensory overload.
- **Digital Collaboration Tools:** Platforms such as Microsoft Teams and Zoom facilitate structured communication that neurodiverse employees can engage in at their own pace, with options for asynchronous interaction.
- **Structured Project Management Software:** Tools like Asana and Trello are provided to help employees organize tasks visually and prioritize effectively. These tools also allow for customized work routines, accommodating neurodiverse individuals who benefit from structured workflows.

Outcomes

The Centres of Excellence have enabled EY to capitalize on the unique problem-solving abilities of neurodiverse employees while fostering a more inclusive workplace culture.

DXC Technology's Dandelion Program

Description

The Dandelion Program by DXC Technology focuses on employing autistic individuals in IT and cybersecurity roles by providing specialized training, tailored support, and technological tools to ensure a productive working environment.

Technologies Used

- **Personalized Learning Modules:** DXC Technology uses an adaptive learning platform that tailors training modules based on individual progress, allowing autistic employees to learn new skills at their own pace.
- **Augmented Reality (AR) for Skill Development:** AR is used for onboarding processes and simulations, which prepare autistic employees for real-world tasks and interactions in a controlled, low-pressure setting.

- **Communication Aids:** Tools like assistive chatbots and digital documentation platforms reduce the need for face-to-face interactions, allowing employees to communicate in ways that are comfortable and effective for them.

Outcomes

DXC Technology's Dandelion Program has successfully trained and retained autistic individuals in critical IT roles. The program's participants have demonstrated increased engagement and skill development, particularly in tasks requiring attention to detail and precision. The initiative has also improved neurodiverse representation within DXC.

JP Morgan Chase's Autism at Work Program

Description

JP Morgan Chase's Autism at Work program is designed to recruit, train, and support neurodiverse employees, particularly those with autism, in finance and technology roles. By utilizing specialized technology and structured hiring processes, the program ensures a supportive work environment tailored to the needs of neurodiverse individuals.

Technologies Used

- **Online Behavioral Assessments:** To identify candidates' strengths and align them with appropriate roles, JP Morgan Chase uses customized assessments that prioritize cognitive and technical skills over traditional social criteria.
- **Digital Productivity and Organization Tools:** Employees are provided with tools like OneNote, Microsoft Planner, and project management software that help them organize tasks and set reminders, minimizing the potential for sensory and cognitive overload.
- **Augmentative Communication Technology:** For individuals with specific communication needs, JP Morgan Chase offers access to AAC devices and support tools that facilitate effective interaction with team members.

Outcomes

The Autism at Work program at JP Morgan Chase has contributed to an inclusive work culture where neurodiverse employees feel valued and supported. The program has resulted in high retention rates, with many autistic employees excelling in analytical and technical roles that align with their unique strengths.

Neurodiverse Contributions to Technology Innovation: Case Studies of Individuals with Autism

Neurodiverse individuals, especially those with autism, often exhibit unique patterns of thinking, problem-solving, and perseverance that lend themselves to advancements in technology (Sacks, 1995). Their abilities to focus intensely, recognize patterns, and approach problems from novel angles have spurred innovation in a variety of tech-related fields. This section explores specific individuals with autism whose contributions have left a lasting impact on technology and related industries.

Temple Grandin: Innovator in Agricultural and Livestock Technology

Temple Grandin, diagnosed with autism in early childhood, leveraged her visual thinking and heightened sensory awareness to design humane livestock handling systems that prioritize animal welfare. Her experience with sensory sensitivities allowed her to empathize deeply with the animals' experiences, enabling her to design systems that minimize stress for livestock (Grandin, 1995).

Her "hug box," originally designed to address her own need for sensory comfort, has inspired similar calming devices for others with autism, showcasing how personal challenges can lead to universally beneficial products. Additionally, Grandin's innovations in livestock handling have influenced both the agricultural industry and the field of assistive technologies, highlighting how neurodiverse perspectives lead to advancements in multiple domains.

Satoshi Tajiri: Creator of PokéMon and Gamification Pioneer

Satoshi Tajiri, widely known as the creator of PokéMon, is often discussed within neurodiversity circles due to his autism. Tajiri's deep interest in nature, particularly in collecting and cataloging insects, directly influenced the creation of PokéMon, a franchise that has become a cultural phenomenon and a pioneer of gamification in educational technology (Emanuel, 2014).

Tajiri's ability to see connections between systems and his highly focused attention to detail allowed him to develop a game concept that has since evolved into numerous technological and educational applications. PokéMon's success laid a foundation for gamified learning, where complex systems are simplified to teach users about categories, strategy, and social interaction (Emanuel, 2014).

Jonathan Chase: Enhancing Virtual Reality with Neurodiverse Perspectives

Jonathan Chase, an autistic engineer and virtual reality (VR) developer, works to make VR experiences accessible for neurodiverse users. His work addresses sensory sensitivities by designing VR interfaces that are customizable for sensory-friendly experiences, particularly suited for individuals with autism.

Chase's personal experience with sensory overload motivated him to develop VR applications that consider various neurodiverse needs, such as reducing bright lights and minimizing auditory triggers. His contributions emphasize the importance of inclusive design in VR and augmented reality (AR), which are increasingly used in both entertainment and therapeutic contexts for individuals on the autism spectrum (Chase, 2020).

Thorkil Sonne: Founder of Specialisterne and Advocate for Autism Employment

Thorkil Sonne, a Danish social entrepreneur and father of a child with autism, founded Specialisterne ("The Specialists") to harness the unique skills of individuals with autism in software testing, data entry, and quality control. Specialisterne has expanded globally, partnering with tech giants like SAP and Microsoft, which have adapted similar hiring models to benefit from the precision and pattern-recognition skills typical of individuals with autism (Austin & Pisano, 2017).

Dani Bowman: Animation Innovator and Autism Advocate

Dani Bowman, an autistic animator and founder of DaniMation Entertainment, developed animation content with a focus on social-emotional learning and representation for individuals with autism. She also teaches animation to students with autism, showing how skills in animation and storytelling can serve as both a creative outlet and an educational tool.

Bowman's work highlights how technology can bridge communication gaps for neurodiverse communities and provides a platform for those with autism to express themselves creatively. Her initiatives demonstrate how neurodiverse individuals can inspire and teach others through technology at *DaniMation Official Site* under "Empowering Young Autistic Creators".

F. Christopher Pauley: From Autism Hiring Programs to Machine Learning Innovation

Christopher Pauley, diagnosed with autism, joined Microsoft's Autism Hiring Program and quickly became known for his work in machine learning and data analysis. His detailed-oriented approach to data, combined with an ability to detect patterns, has contributed significantly to advancements in Microsoft's AI projects. Pauley's success has served as a model, influencing Microsoft's broader hiring practices and inspiring similar programs in the tech industry.

Pauley's contributions underscore how hiring neurodiverse individuals enhances productivity and leads to breakthrough ideas, especially in fields like AI, where unconventional perspectives on data patterns are advantageous.

Discussion

These case studies on Technology-Driven Accessibility for Neurodiverse Individuals, Especially Autism, in Higher Education and Employment illustrate the powerful role of technology in creating accessible

environments for neurodiverse individuals, particularly those with autism. By embracing assistive technologies, VR simulations, specialized workspaces, and tailored job-matching platforms, these organizations and programs exemplify how technology can redefine accessibility and inclusivity. Such initiatives not only enhance productivity and job satisfaction for neurodiverse individuals but also demonstrate that a technology-driven approach to accessibility fosters richer, more diverse educational and professional communities.

These case studies Neurodiverse Contributions to Technology Innovation illustrate how individuals with autism can excel in technology when given opportunities that capitalize on their unique strengths. Their contributions emphasize the necessity for inclusive hiring practices, accessible workspaces, and a commitment to leveraging neurodiverse skills in the tech industry. Each case demonstrates that neurodiversity not only enhances innovation but also fosters a richer understanding of user-centric design across industries.

Policy Recommendations and Future Directions

1. **Enforcing Accessibility Standards:** Governments should mandate accessibility standards for educational and workplace technologies, ensuring they offer features that accommodate neurodiverse users. Accessibility standards can promote flexible formats, sensory considerations, and customizable interfaces (Hehir, 2005).
2. **Incentivizing Inclusive Hiring Practices:** Providing tax breaks or funding to companies that adopt neurodiverse hiring practices can encourage organizations to implement inclusive policies. These incentives would also support training for hiring managers and supervisors in understanding neurodiversity.
3. **Supporting Research and Development:** Increased funding for accessibility-related technology research can lead to innovative tools that cater to specific needs of neurodiverse individuals, particularly those on the autism spectrum. R&D in this field can explore customized AI tools, VR environments, and productivity software optimized for neurodiverse users.
4. **Cross-Sector Partnerships:** Collaborations among tech developers, educators, and advocacy organizations can create comprehensive accessibility solutions. By combining expertise from multiple fields, these partnerships can develop tools that meet the diverse needs of neurodiverse individuals across educational and employment settings.

These case studies illustrate the powerful role of technology in creating accessible environments for neurodiverse individuals, particularly those with autism. By embracing assistive technologies, VR simulations, specialized workspaces, and tailored job-matching platforms, these organizations and programs exemplify how technology can redefine accessibility and inclusivity. Such initiatives not only enhance productivity and job satisfaction for neurodiverse individuals but also demonstrate that a technology-driven approach to accessibility fosters richer, more diverse educational and professional communities.

Lived Experience of Neuro-Diverse Persons as Books

Books and papers authored by neurodiverse individuals sharing their lived experiences provide invaluable perspectives, often challenging conventional narratives around neurodiversity. Some notable works include:

1. **Temple Grandin's *Thinking in Pictures*** – Grandin, an autistic professor and animal behavior expert, provides deep insight into her visual thinking process and how her autism has shaped her life and career. Her work has helped shift public perception about autism's strengths (Grandin, 1995).
2. **Naoki Higashida's *The Reason I Jump*** – Written by a non-speaking autistic teenager, this memoir describes his inner world, debunking misconceptions about autism and emphasizing the importance of empathy and patience (Higashida, N. 2013).

3. **Loud Hands: Autistic People, Speaking** edited by Julia Bascom – This anthology, by autistic contributors, presents essays and stories that highlight the autistic community's perspectives, advocating for self-determination and respect for autistic ways of being (Bascom, 2012).
4. **Siena Castellon's The Spectrum Girl's Survival Guide** – Castellon, an autistic and dyslexic advocate, offers practical advice and relatable stories for young neurodiverse individuals, aiming to build confidence and resilience (Castellon, S. 2020).
5. **John Elder Robison's book Look Me in the Eye: My Life with Asperger's** is a *New York Times* bestselling book chronicling the author's life with Asperger syndrome and tough times growing up (Robison, 2008).

These works allow neurodiverse voices to shape the understanding of neurodiversity, fostering empathy and highlighting the importance of acceptance over forced conformity.

Conclusion

Moving beyond ableist perspectives and embracing the principles of disability justice, society can foster inclusive spaces that celebrate neurodiversity. Technology, when aligned with the values of disability justice, offers the tools to make this vision a reality. In educational and workplace environments, these tools can transform accessibility, enabling neurodiverse individuals, particularly those with autism, to engage fully and contribute their unique strengths. Together, disability justice and technology pave the way for a more inclusive, equitable world where every individual can thrive.

Disability justice and technology can work hand-in-hand to dismantle the ableist barriers that have traditionally limited opportunities for neurodiverse individuals, particularly those on the autism spectrum. By adopting a justice-oriented framework, society can create environments where neurodiversity is celebrated, and all individuals can contribute meaningfully. When implemented thoughtfully, technology has the potential to transform higher education and employment landscapes, fostering a world that embraces neurodiversity as an essential part of human variation.

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this work.

Acknowledgement

The authors wish to thank the neuro-divergent individuals who are/were in higher education who had shared their lived experiences which helped us in writing some sections of this paper.

References

Armstrong, T. (2011). *The power of neurodiversity: Unleashing the advantages of your differently wired brain* (published in hardcover as *Neurodiversity*), Da Capo Press, US. <http://dickyricky.com/books/psych/The%20Power%20of%20Neurodiversity%20-%20Thomas%20Armstrong.pdf>

Austin, R. D., & Pisano, G. P. (2017). Neurodiversity as a competitive advantage. *Harvard Business Review*, 95(3), 96-103. <https://hbr.org/2017/05/neurodiversity-as-a-competitive-advantage>

Bascom, J. (Ed.). (2012). *Loud hands: Autistic people, speaking*. Autistic Press, Washington, US. <https://autisticadvocacy.org/book/loud-hands-autistic-people-speaking/>

Castellon, S. (2020). *The Spectrum Girl's Survival Guide: How to Grow up Awesome and Autistic*. Jessica Kingsley Publishers. <https://www.waterstones.com/book/the-spectrum-girls-survival-guide/siena-castellon/9781787751835>

Crenshaw, K. (1991). Mapping the margins: Intersectionality, identity politics, and violence against women of color. *Stanford Law Review*, 43(6), 1241-1299. <https://blogs.law.columbia.edu/critique1313/files/2020/02/1229039.pdf>

De, Mitu., & Basu, I (2024). Neurodiversity affirming approaches for inclusive education. *Harvest Online*, 9(2), 14 - 22. <https://www.harvestjournal.net/wp-content/uploads/2024/12/Mitu-De.pdf>

De, Mitu., & Basu, I. (2025). Neurodiversity: A paradigm shift in understanding neurological differences in the context of the un sustainable development goals (SDGs), *International Journal of Sustainable Biome and Life Care*. 1(2&3), 8-30. <https://doi.org/10.31632/ijisblc.2025.v01i02and3.002>

Dechsling, A., Orm, S., Kalandadze, T., Sütterlin, S., Øien, R. A., Shic, F., & Nordahl-Hansen, A. (2022). Virtual and Augmented Reality in Social Skills Interventions for Individuals with Autism Spectrum Disorder: A Scoping Review. *Journal of autism and developmental disorders*, 52(11), 4692–4707. <https://doi.org/10.1007/s10803-021-05338-5>

Dechsling, Anders & Nordahl-Hansen, Anders. (2023). Virtual Reality and Autism. Chap.7 in Book :Technology and Sustainable Development. Eds by Dechsling A. & Nordahl-Hansen A.. Routledge <https://doi.org/10.1201/9781003325086-7>.

Dolmage, J. T. (2017). *Academic ableism: Disability and higher education*, 254 pages. University of Michigan Press, 254 Pages. <https://www.jstor.org/stable/j.ctvr33d50>

Emanuel, C. (2014). An Accidental Pokemon Expert: Contemporary Psychoanalysis on the Autism Spectrum. *International Journal of Psychoanalytic Self Psychology*, 10 (1), 53–68. <https://doi.org/10.1080/15551024.2015.977485> .

Frolli, A., Savarese, G., Di Carmine, F., Bosco, A., Saviano, E., Rega, A., Carotenuto, M., & Ricci, M. C. (2022). Children on the Autism Spectrum and the Use of Virtual Reality for Supporting Social Skills. *Children (Basel, Switzerland)*, 9(2), 181. <https://doi.org/10.3390/children9020181>

Grandin, T. (1995). Thinking in Pictures: My Life with Autism. Vintage. https://dn720703.ca.archive.org/0/items/Various_PDFs/TempleGrandin-ThinkingInPictures_text.pdf

Hamilton, L. G., & Petty, S. (2023). Compassionate pedagogy for neurodiversity in higher education: A conceptual analysis. *Frontiers in psychology*, 14, 1093290. <https://doi.org/10.3389/fpsyg.2023.1093290>

Hehir, T. (2005). *New directions in special education: Eliminating ableism in policy and practice*. Harvard Education Press, Cambridge, US. 224 pages. <https://hep.gse.harvard.edu/9781891792618/new-directions-in-special-education/>

Higashida, N. (2013). *The reason I jump: The inner voice of a thirteen-year-old boy with autism*. Knopf Canada. https://archive.org/details/reasonjumpinner0000higa_19f6

Krzeminska, A., & Hawse, S. (2020). Mainstreaming neurodiversity for an inclusive and sustainable future workforce: autism-spectrum employees. In L. Wood, L. P. Tan, Y. A. Breyer, & S. Hawse (Eds.), *Industry and higher education: case studies for sustainable futures* (pp. 229-261). Springer. https://doi.org/10.1007/978-981-15-0874-5_11

Mladenov, T. (2016). Disability and social justice. *Disability & Society*, 31(9), 1226–1241. <https://doi.org/10.1080/09687599.2016.1256273>

Mounkoro, Ismaila, Tariq Rafique, Ederson de los Trino Tapia, Flordeline A. Cadelina, Anton Diaz Uberas, Evelyn Ansah Karkkulainen, Rubén González Vallejo, Cesar D. Galingana (2024). Ai-Powered Tutoring Systems: Revolutionizing Individualized Support For Learners. *Library Progress International*, 44(6), 344-355 Robison, J. E. (2008). *Look me in the eye: My life with Asperger's*. Crown, New York. https://books.google.co.in/books/about/Look_Me_in_the_Eye.html?id=aUSijTowZ5lC&redir_esc=y

Rollnik-Sadowska, E., & Grabińska, V. (2024). Managing Neurodiversity in Workplaces: A Review and Future Research Agenda for Sustainable Human Resource Management. *Sustainability*, 16(15), 6594. <https://doi.org/10.3390/su16156594> .

Sacks, O. (1995). *An Anthropologist on Mars*. Seven Paradoxical Tales, New York. <https://jm919846758.wordpress.com/wp-content/uploads/2019/06/an-anthropologist-on-mars-by-oliver-sacks-complete-text-formatted-for-microsoft-word.pdf>

Silberman, S. (2017). *Neurotribes: the legacy of autism and the future of neurodiversity*. Avery, New York. <http://dickyricky.com/books/psych/NeuroTribes%20-%20Steve%20Silberman.pdf>

Xing, Nan. (2024). Artificial Intelligence to support Children with Autism. *Journal of AI-Powered Medical Innovations*. 2. 31-43 <https://doi.org/10.60087/vol2iissue1.p43> .

Zhou, Kathy & Alam, Bushra & Bani-Fatemi, Ali & Howe, Aaron & Chatta, Vijay Kumar & Nowrouzi-Kia, Behdin. (2024). Autism spectrum disorder in the workplace: a position paper to support an inclusive and neurodivergent approach to work participation and engagement. *Discover Psychology*. 4. 1-8. <https://doi.org/10.1007/s44202-024-00150-5>.